
Some Order Theory

Recall that a relation is a triple R = (A,B,Gr(R)), where Gr(R) ⊂ A ×B is the graph of R. Whereas
functions (a special case of a relation) may be interpreted as ‘acting’ on the elements of A and returning
elements of B, in general it is fruitful to think of a relation R as ‘relating’ or ‘ordering’ elements of A and
B, in the sense that a ∈ A and b ∈ B are R-related if (a, b) ∈ GrR.

As with functions (and, in fact, even more so in this case), we shall usually identify a relation R with its
graph GrR.

We will be particularly interested in the case where A = B, and we shall say that R = (A,A,GrR) is
a relation on A. We call a pair (A,R) a set equipped with a relation, or an ordered set, if R is a
relation on A. We call A the domain or underlying set of the ordered set (A,R), and R is called the
relation or ordering of the ordered set (A,R). [It is worth mentioning that the pair (A,R) doesn’t really
provide any extra information than the relation R would already contain (since it already has its first two
components equal to A), but we consider the pair if only to emphasize the fact that we wish to consider
(A,R) as a set for which there is a relation acting between its elements.] When R is understood, we shall
typically refer to (A,R) by the underlying set A (however, we shall be unusually careful). Denote by Rel(A)
the set of all relations on A.

Unless otherwise mentioned, in this section ‘relation’ will be meant to mean a binary relation whose
domain and codomain coincide. Given such a (binary) relation R on A, we use the infix notation xRy to
mean (x, y) ∈ GrR. We shall also typically use symbols like ∼,≃,≈,≡,≅,<,≤,≺,⪯,⊏,⊑,⊂,⊆, etc.

Example 1

Given any set A, we may define a relation R on A by (x, y) ∈ GrR if and only if x ⊂ y. By abuse of
notation, we denote this relation by ⊂ as well and call it the subset relation on A.

Example 2

Likewise, given any set A, we may define a relation R on A by (x, y) ∈ GrR if and only if x ∈ y. Again,
by abuse of notation, we denote this relation by ∈ as well and call it the membership relation on
A.

Example 3

The standard ordering ≤ defines a relation R on N . Specifically, (n,m) ∈ GrR if and only if there is
p such that n + p =m.

Example 4

Let A = {1,2,3,4}. Then GrR ∶= {(1,2), (1,3), (1,4), (2,4), (3,4)} defines a relation on A.

Example 5

Let A = {1,2,3,4,5}. Then GrR ∶= {(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,5), (4,5)} defines
a relation on A.

1



Example 6

For any set A, we define a relation R on A by (x, y) ∈ GrR if and only if x = y. By abuse of notation,
we denote this relation by = and call it the equality relation on A.

Example 7

For any set A, the sets A ×A and ∅ define (graphs of) relations on A.

Example 8

For any set A, we define a relation R on A by (x, y) ∈ GrR if and only if there exists a bijection
f ∶ x→ y. When (x, y) ∈ GrR, we write ∣x∣ = ∣y∣, and say that x and y have the same cardinality (note
that this is independent of the containing set A).

Just as with algebras, we are also interested in subobjects and of maps between relations on a set that
respect the relations.

Suppose that we have two ordered sets (A,R) and (B,S). Then we say that (A,R) is a ordered subset
of (B,S) if A ⊂ B and for every a, b ∈ A, we have (a, b) ∈ GrS if and only if (a, b) ∈ GrS. When (A,R) is an
ordered subset of (B,S), we write (A,R) ⊂ (B,S).

Naturally, given an ordered set (A,R) and a subset B ⊂ A, we might ask if it is possible to ‘restrict’ the
relation R to B. Given a relation R = (A,B,GrR), and subsets C ⊂ A and D ⊂ B, we define the restriction
of R to C,D as the relation

R∣C,D ∶= (C,D, (C ×D) ∩GrR).
It is important to note that given an ordered set (A,R) and two ordered subsets (B,R′) and (B,R′′), it

must be the case that R′ = R′′ = R∣B :

Lemma 0.1

Suppose that (B,R′) ⊂ (A,R). Then R′ = R∣B .

Thus, an ordered subset is determined entirely by its underlying set.

Example 9

Suppose we have given the ordered set (P(S),⊂). Then take B to be the set of all singletons. Then
Gr ⊂ ∣B = {({a},{a}) ∣ a ∈ S}. On the other hand, let C be the set of all finite subsets of S. Then
Gr ⊂ ∣C = {(x, y) ∈ P(S) × P(S) ∣ x ⊂ y and x, y finite}.

Suppose that (A,R) and (B,S) are two ordered sets. Then we define a order-preserving map ϕ ∶
(A,R) → (B,S) to be a triple ((A,R), (B,S), ϕ ∶ A → B) (following the convention of functions in that the
order-preserving map records the relevant objects) such that for every a, b ∈ A we have that (a, b) ∈ GrR
implies ϕ(a) = ϕ(b) or (ϕ(a), ϕ(b)) ∈ GrS, and the function ϕ ∶ A → B is said to be a order-preserving
map from (A,R) into (B,S). It is also common to call such a triple ((A,R), (B,S), ϕ) a monotonic
function or to say that it is monotonic.

Example 10

The map ϕ ∶ (N,≤) → (N,≤) defined by ϕ(n) =
⎧⎪⎪⎨⎪⎪⎩

n − 1 if n ≥ 1

0 if n = 0
defines an order-preserving function.
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Example 11

The map ϕ ∶ (N,≤) → (P(N),⊂) defined by ϕ(n) = {n} is not an order-preserving function.
However, the map ψ ∶ (N,≤) → (P(N),⊂) defined by ψ(n) = {0, . . . , n} is an order-preserving function.

We say that an order-preserving map ϕ ∶ (A,R) → (B,S) is an order-embedding if

(i) ϕ ∶ A→ B is injective and

(ii) for every a, b ∈ A we have (a, b) ∈ GrR if and only if (ϕ(a), ϕ(b)) ∈ GrS.

An order-isomorphism is a bijective order-embedding.

Example 12

The map ψ in ?? defines an order-embedding.

Being injective (or even bijective) alone does not imply that an order-preserving map is an order-
embedding:

Example 13

Suppose B ⊂−− A, and (A,R) is a ordered set. Then the identity map idA defines an order-preserving
map idA ∶ (A,R∣B) → (A,R). If there is at least one pair (a, b) ∈ GrR such that at least one of a and
b lie in A ∖B (and so (a, b) ∉ GrR∣B), then this will not be an order-embedding.

Naturally, we may show that the composition of two order-preserving maps is an order-preserving map:

Lemma 0.2

Suppose ϕ ∶ (A,R) → (B,S) and ψ ∶ (B,S) → (C,T ) are order-preserving maps. Then
ψ ○ϕ ∶ (A,R) → (C,T ) is an order-preserving map. Moreover, if ϕ and ψ are order-embeddings, then
ψ ○ ϕ is an order-embedding.

Section 1

Strict Partial Orders and Partial Orders

Our second interpretation of a relation is that of containment or of ordering by size. The motivating
examples in this case are the subset relation ⊂ on P(S) for some set S, or the membership relation ∈ on a set
S. However, in general the membership relation ∈ on a set does not have many nice properties, so our main
motivation shall be ⊂ on P(S). But there is also ⊂−−, which shall serve as the basis for our first definition: an
ordered set (P,<) is said to be a strict partially-ordered set, or strict poset, if

(i) < is irreflexive, i.e. x < x is never true for x ∈ P , and

(ii) < is transitive, i.e. x < y and y < z implies x < z for every x, y, z ∈ P .

The relation < is called a strict partial order. A strict partial order in general satisfies another property; it
is asymmetric. We say that a relation R on a set A is asymmetric if (a, b) ∈ GrR implies (b, a) ∉ GrR. To
see why < is asymmetric, suppose for the sake of a contradiction that x < y and y < x. Then by transitivity,
we have x < x, from which we reach a contradiction by the fact that < is irreflexive.

What of ⊂, then? The relation between ⊂ and ⊂−− is quite simple: A ⊂ B if and only if A ⊂−− B or A = B.
For this reason, it seems worthwhile to consider, given a strict partial order <, the new relation <=, which
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we denote by ≤, defined by x ≤ y if and only if x < y or x = y. Alternatively, it is the relation defined by

(Gr ≤) = (Gr <) ∪ (Gr =).

Let us examine the properties of ≤:

(i) ≤ is reflexive, which follows by definition.

(ii) ≤ is transitive, as given x ≤ y and y ≤ z, we have several cases:

Case 1: x < y and y < z. In this case, that x < z and hence x ≤ z follows from the fact that < is
transitive by hypothesis.

Case 2: x = y and y < z. In this case, x < z by assumption, substituting y for x.

Case 3: x < y and y = z. Yet again, we have x < z by assumption, substituting y for z.

Case 4: x = y and y = z. In this case, x = z by the transitivity of =.

(iii) Given that < is asymmetric, we might ask what sort of implications exist when x ≤ y and y ≤ x. Indeed,
because of the fact that < is irreflexive and asymmetric, it must be that x = y. Otherwise, we have
x < y and y < x, which is not possible. A relation R for which (x, y), (y, x) ∈ GrR implies x = y is said
to be anti-symmetric. In effect, it is a relation in which there are no ‘non-trivial’ symmetries.

We say that an ordered set (P,≤) is a partially-ordered set, or a poset, if

(i) ≤ is reflexive,

(ii) ≤ is anti-symmetric, and

(iii) ≤ is transitive.

The relation ≤ is called a partial order. Sometimes we call a poset (P,≤) a non-strict poset and ≤ a
non-strict partial order.

In the same way that A ⊂ B if and only if A ⊂−− B or A = B, we could also describe ⊂−− in terms of ⊂: A ⊂−− B
if and only if A ⊂ B and A ≠ B. Thus, given a partial order ≤, we could ask whether the relation ≤≠, which
we denote by <, defined by x ≤ y and x ≠ y, or

(Gr <) = (Gr ≤) ∖ (Gr =),

is a strict partial order. And indeed it is:

(i) < is irreflexive, as if x < x, then by definition x ≤ x and x ≠ x. But x ≠ x never holds, so it must be that
x < x never holds.

(ii) < is transitive, as if x < y and y < z, then x ≤ y and y ≤ z in particular, so x ≤ z by the fact that ≤ is
transitive. Now, if x = z, then we would have x ≤ y and y ≤ x, so that by anti-symmetry of ≤ we find
that x = y. But by the definition of <, we know that x ≠ y, leading to a contradiction. Hence, x ≤ z
and x ≠ z, so x < z.

We thus find that partial orders and strict partial orders are related to one-another in a very strong way,
and for this reason we shall freely use both the strict and non-strict versions of a partial order when dealing
with either strict posets or (non-strict) posets, which in the above sense are ‘equivalent’.

In general, given a poset (P,R), we denote the strict partial order associated with R by R≠, whereas
given a strict poset (P,R), we denote the (non-strict) partial order associated with R by R=. When possible,
we shall adopt the convention that the (non-strict) partial order associated with a strict partial order be
represented by adding a bar beneath the symbol of the strict partial order, at least when possible, such as
with < and ≤ or ≺ and ⪯. However, there are exceptions, such as ⊂−− and ⊂.
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Example 14

(P(S),⊂) is a poset, while (P(S), ⊂−−) is the associated strict poset.

Example 15

(N,≤) is a poset, while (N,<) is the associated strict poset.
The algebraic structure of N behaves well with respect to N. Indeed, given n ≤m and any p, we find
that n ⋅ p ≤m ⋅ p since there exists an injection of n × p into m × p given by ι × idp, with ι ∶ n→m the
inclusion of n into m. Likewise, n + p ≤ n + q, again by the fact that there exists an injection of n ∐ p
into m ∐ p given by ι ∐ idp. We say that + and ⋅ are compatible with ≤.
We can strengthen the above identities; if n <m and p ≠ 0, then n ⋅p <m ⋅p, with the same reasoning:
there is an injection of n×p into m×p that is not a surjection, showing that n ⋅p <m ⋅p. Additionally,
with n <m and p arbitrary, we also find that n + p <m + p, again by the same reasoning as above.
With this in mind, we have cancellation laws for + and ⋅; if n + p = m + p, then n = m, and if
n ⋅ p =m ⋅ p, then either n =m or p = 0.

Example 16

Define the relation ∣ on N, called the divibility relation, by n ∣ m if and only if there exists p ∈ N
such that n ⋅ p =m.
∣ is reflexive, as n ⋅ 1 = n. It is anti-symmetric, as if n ∣m and m ∣ n, then there exists p and q such
that n ⋅ p =m and m ⋅ q = n. Thus, we have n = (n ⋅ p) ⋅ q = n ⋅ (p ⋅ q) and m =m ⋅ (p ⋅ q). So either n ≠ 0
and so p ⋅ q = 1, which shows p = q = 1, m ≠ 0, which also shows that p = q = 1, or m = n = 0. In any
case, n =m. Finally, ∣ is transitive, as if p ∣ q and q ∣ r there are natural numbers n and m such that
p ⋅ n = q and q ⋅m = r. But then p ⋅ (n ⋅m) = r, so p ∣ r.
Thus, we see that (N, ∣) is a poset.

Example 17

Given two partially-ordered sets (P1,≤1) and (P2,≤2), we may define a partial order ≤ on P1 ×P2 as
follows: (a, b) ≤ (c, d) if and only if a <1 c or a = c and b ≤2 d.
The partial order ≤ is called the lexicographical ordering induced by ≤1 and ≤2, so named because
it mirrors how words are alphabetized, and (P1 × P2,≤) is called the lexicographical product of
(P1,≤1) and (P2,≤2).

Example 18

Given two partially-ordered sets (P1,≤1) and (P2,≤2), we may define a partial order ≤ on P1 ∐P2 as
follows: (x, i) ≤ (y, j) if and only if i < j, i = j = 0 and x ≤1 y, or i = j = 1 and x ≤2 y.
The poset (P1 ∐ P2,≤) is called the ordinal sum of (P1,≤1) and (P2,≤2), and is denoted by (P1,≤1
) ⊕ (P2,≤2).
It is important to note that (P1,≤1) and (P2,≤2) both embed into (P1,≤1)⊕(P2,≤2) via the canonical
inclusions ι1 ∶ P1 → P1 ∐ P2 and ι2 ∶ P2 → P1 ∐ P2.

Given an ordered-set (A,R), we may define another partial order on A which is ‘dual’ to R, which we
denote by Rop and define by

GrRop ∶= {(a, b) ∈ A ×A ∣ (b, a) ∈ GrR}.
We call this new relation the opposite relation (or opposite, dual, inverse, etc) of R. For example, the
opposite relation of ⊂ on P(S) is ⊃; A ⊂ B if and only if B ⊃ A.

Another common notation, particularly when the symbol being used for the relation R is not symmetric
about a vertical axis, is to flip the symbol along the vertical axis, as in ⊂ and ⊃ or ≤ and ≥. We shall adopt
this convention when convenient and using ≤op when there could be possible confusion. While a ≤ b may be
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read as ‘a is less than or equal to b’, we read a ≥ b as ‘a is greater than or equal to b’.
The importance of the opposite relation is that it captures a sense of ‘duality’. For example, given some

property P of R, the ‘dual property’ P op is a property of Rop, where every instance of R in P is replaced
by Rop. A property P is said to be self-dual if P holds if and only if P op. For example, reflexitivity is
self-dual; R is reflexive if and only if ≤op is. Likewise, anti-symmetry, transitivity, irreflexitivity, asymmetry,
and symmetry are all self-dual properties:

Lemma 1.1

Let (A,R) be an ordered-set, and Rop the opposite relation of R.

(a) (Rop)op = R.

(b) R is reflexive if and only if Rop is.

(c) R is irreflexive if and only if Rop is.

(d) R is symmetric if and only if Rop is, and this is the case if and only if R = Rop.

(e) R is asymmetric if and only if Rop is.

(f) R is anti-symmetric if and only if Rop is.

(g) R is transitive if and only if Rop is.

Corollary 1.2

If (P,≤) is a (non-strict or strict) poset, then (P,≥) is a (non-strict or strict) poset.

Section 2

Total Orders

As the example of P(S) makes apparent, it need not be the case that given two elements x and y of a poset
we need have either x ≤ y or y ≤ x. That is, not every pair of elements needs to be comparable. We can
define two relations on the underlying set of a poset (P,≤); we define the comparability relation, ⊥, by

(Gr ⊥) = {(x, y) ∣ x ≤ y or y ≤ x}.

We can immediately see that ⊥ is reflexive (for x ≤ x), symmetric (for the condition ‘x ≤ y or y ≤ x’
is symmetric), but it need not be transitive, for {0,1},{0,2} ⊂ {0,1,2} but neither {0,1} ⊂ {0,2} nor
{0,2} ⊂ {0,1}. Similarly, we define the incomparability relation, ∥, by

(Gr ∥) = (P × P ) ∖ (Gr ⊥) = {(x, y) ∣ neither x ≤ y nor y ≤ x}.

∥ is irreflexive (since ⊥ is reflexive) and symmetric (since ⊥ is symmetric), but it also need not be transitive,
for {0,1} ∥ {0,2} and {0,2} ∥ {0,1,3}, but {0,1} ⊥ {0,1,3}.

When a partial order ≤ is such that x ⊥ y for every pair (x, y) ∈ P 2, we say that ≤ is a total order and
that (P,≤) is a totally ordered set (sometimes called a linear order). More generally, we say that a
relation R on a set A is total if for every (x, y) ∈ A2 either (x, y) ∈ R or (y, x) ∈ R.

The ‘strict’ version of totality is known as trichotomy : a relation R on a set A is trichotomous if for
every (x, y) ∈ A2, exactly one of x = y, x < y, or y < x occurs. Indeed, suppose that ≤ is a total order, and let
< be the associative strict partial order. Given x, y, we know that either x ≤ y or y ≤ x. In terms of <, this
means that either x = y or x < y, or x = y or x = y. That is, x = y, x < y, or y < x. That exactly one of these
can happen follows from the fact that if x = y and x < y, then x < x, leading to a contradiction. The same
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argument shows that x = y and y < x cannot occur. Finally, x < y and y < x cannot occur by the fact that <
is asymmetric.

Example 19

(N,≤) is a totally-ordered set, as is every (Von Neumann) natural number.

Example 20

Let (P1,≤1) and (P2,≤2) be totally-ordered sets. We can show that (P1 ×p2,≤) with ≤ the dictionary
order induced by ≤1 and ≤2 is a total order.

Example 21

Let (P1,≤1) and (P2,≤2) be totally-ordered sets. We can show that the disjoint union (P1 ∐ P2,≤) =
(P1,≤1) ∐ (P2,≤2) is also a total order.

Subsection 2.1

Ordered Subsets, Order-Preserving Maps, and Posets

Concerning ordered subsets, we wish to show that the poset (P,≤) is an ordered subset of the poset (Q,⪯)
if and only if (P,<) is an ordered subset of (Q,≺).

Proposition 2.1

Let (P,≤) and (Q,⪯) be posets and (P,<) and (Q,≺) their respective strict versions. Then
(P,≤) is an ordered subset of (Q,⪯) if and only if (P,<) is an ordered subset of (Q,≺).

We may also show that an ordered subset of a poset (Q,⪯) is itself a poset, and in fact that being an
ordered subset implies inheritance of whatever properties (among those we’ve seen thus far) the containing
relation has:

Proposition 2.2

Let (A,R) be an ordered subset of (B,S). Then

(a) if S is reflexive, then R is reflexive,

(b) if S is irreflexive, then R is irreflexive,

(c) if S is symmetric, then R is symmetric,

(d) if S is asymmetric, then R is asymmetric,

(e) if S is anti-symmetric, then R is anti-symmetric,

(f) if S is transitive, then R is transitive,

(g) if S is total, then R is total, and

(h) if S is trichotomous, then R is trichotomous.
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Corollary 2.3

If (A,R) is an ordered subset of (B,S), then if (B,S) is a poset or a strict poset, then (A,R)
is a poset or strict poset, respectively.

For this reason, we might call an ordered subset (A,R) or a poset (P,≤) a partially-ordered subset or
subposet. If (P,≤) is moreover a totally-ordered set, then we might call (A,R) a totally-ordered subset.

We can also extend ?? to show that order isomorphisms preserve these properties (as we should hope
they do, for otherwise we’d need to ask ourselves if order isomorphisms are actually capturing the entirety
of the structure):

Proposition 2.4

Let (A,R) and (B,S) be order isomorphic. Then

(a) if S is reflexive, then R is reflexive,

(b) if S is irreflexive, then R is irreflexive,

(c) if S is symmetric, then R is symmetric,

(d) if S is asymmetric, then R is asymmetric,

(e) if S is anti-symmetric, then R is anti-symmetric,

(f) if S is transitive, then R is transitive,

(g) if S is total, then R is total, and

(h) if S is trichotomous, then R is trichotomous.

Corollary 2.5

If (A,R) is a poset or a totally-ordered set, and is order isomorphic to (B,S), then (B,S)
is a poset or a totally-ordered set, respectively.

Example 22

Let (P1,≤1) and (P2,≤2) be posets. We define the relation ≤ on P1 × P2 by (a, b) ≤ (c, d) if and only
if b <2 d or, b = d and a ≤1 c; we call this the colexicographical order induced by ≤1 and ≤2, and
(P1 ×P2,≤) the colexicographical product of (P1,≤1) and (P2,≤2). This should look surprisingly
familiar; it is the lexicographical order but with the roles of ≤1 and ≤2 interchanged. While we could
easily adapt the proof that the lexicographical order is a partial order in order to prove that the
colexicographical order is as well, we can more simply reduce the colexicographical order to that of
the lexicographical order by establishing an order isomorphism.
To this effect, let ⪯ be the lexicographical order induced by ≤2 and ≤1 (note the order of ≤1 and ≤2
here!), and then define τ ∶ P2 × P1 → P1 × P2 by τ ∶ (b, a) ↦ (a, b). We claim that τ ∶ (P2 × P1,⪯) →
(P1 × P2,≤) is an order-isomorphism. Indeed, (b, a) ⪯ (d, c) is precisely the statement that b <2 d or,
b = d and a ≤1 c, so τ is certainly order-preserving, and is also a bijection, completely the proof.

Another common way to make use of ?? is to take a bijection ϕ ∶ A→ B, where (A,R) is an ordered set,
and declare that ϕ is an order-isomorphism. That is, we define a relation S on B by (a, b) ∈ GrS if and only
if (ϕ−1(a), ϕ−1(b)) ∈ GrR. In such a case, we would say that ϕ induces the relation S on B.

Finally, we can look at some of the general properties that partially-ordered sets and order-preserving
maps between them have.
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INFIMA

The first is a simplified criterion for being an order-perserving map: whereas with general ordered-sets
we needed to account for the fact that an order-preserving map could be such that multiple elements had
the same image regardless of the relation, this issue does not arise for posets. Indeed, if ϕ(a) = ϕ(b), then
ϕ(a) ≤ ϕ(b) and ϕ(b) ≤ ϕ(a), so the relation is preserved regardless of the relation between a and b (if they are
even comparable). Thus, for (P1,≤1) and (P2,≤2) posets, the map ϕ ∶ (P1,≤1) → (P2,≤2) is order-preserving
exactly when a ≤1 b implies ϕ(a) ≤2 ϕ(b).

Additionally, it is particularly simple to describe order-embeddings for totally-ordered sets:

Lemma 2.6

Suppose (T,≤1) is totally-ordered and (P,≤2) is any poset. Then ϕ ∶ (T,≤1) → (P,≤2) is an
order-embedding if and only if given x, y ∈ T with x <1 y, we have ϕ(x) <2 ϕ(y).

Section 3

Upper and Lower Bounds, Maximal and Minimal Elements, and

Suprema and Infima

Given the fact that the ordering ≤ on a poset (P,≤) can be thought of as measuring relative ‘largeness’, it
is natural to ask about the ‘largest’ element or, dually, the ‘smallest’ element. We can refine this to talk
about elements that are ‘larger’ (respectively, ‘smaller’) than a set of elements, and whether or not there is
a smallest (respectively, largest) element among these.

There are two ways we could interpret ‘largest’ element; on one hand, we could interpret ‘p is the largest
element’ to mean that q ≤ p holds for every element q ∈ P , but on the other hand, we could interpret ‘largest’
to mean that p < q never holds for q ∈ P . Ultimately, these two notions are not equivalent; in the first case,
it is necessarily the case that p is comparable to every element of P , whereas in the second case we need not
have this. Indeed, consider the following example:

Example 23

Consider the poset ({0,1,2,3,4},≤), where

(Gr ≤) = {(0,0), (1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (3,4), (2,4)}.

Then both 0 and 4 satisfy the property that there are no element of {0,1,2,3,4} strictly greater than
them, but the are not greater than every element of {0,1,2,3,4}.

Let (A,R) be an ordered set. We say that an element a ∈ A for which (b, a) ∈ GrR for every b ∈ B is a
maximum (with respect to R), whereas an element a ∈ A for which there is no b ≠ a ∈ B with (b, a) ∈ GrR
is said to be a maximal element. Dually, an element a ∈ A for which (a, b) ∈ GrR for every b ∈ A is a
minimum, and an element a ∈ A for which there is no b ≠ a ∈ A with (a, b) ∈ GrR is a minimal element.
As ?? points out, maximal elements need not be unique. However, maxima/minima (the plural for maximum
and minimum, respectively) are unique, and is also a maximal/minimal element (and necessarily the only
such maximal/minimal element):

Lemma 3.1

Let (A,R) be an ordered set for which R is anti-symmetric. If (A,R) has a maximum or
minimum, then it is unique and is a maximal or minimal element, respectively.

Generalizing the notion of ‘larger than’ and ‘less than’ a bit, we can ask, given an ordered set (A,R) and
a subset B ⊂ A, whether there are elements in A larger than every element of B. Likewise, we can ask if
there are elements in A smaller than every element of B. We say that a ∈ A such that (b, a) ∈ GrR for every
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b ∈ B is a upper bound of B, and a ∈ A such that (a, b) ∈ GrR for every b ∈ B is a lower bound of B.
When there exists a least upper bound a of B, we call a the least upper bound of B or the supremum
of B, and denote it by supB. Likewise, when there exists a greatest lower bound a of B, we call a the least
upper bound of B or the infimum of B, and denote it by infB.

When supB ∈ B, we say that supB is the maximum element of B, whereas if infB ∈ B, then we say
that infB is the minimum element of B. Indeed, if we were to consider (B,R∣B), to say that supB ∈ B is
to say that there is an element of B such that (b, supB) ∈ GrR for every b ∈ B, i.e. that supB is a maximum
of (B,R∣B). Likewise, if infB ∈ B, then it is a minimum of (B,R∣B). Note that unless R is anti-symmetric
it may not be the case that the supremum or infimum of B is unique.

Lemma 3.2

Let (A,R) be an ordered set.

(a) Suppose (B,S) is an ordered subset of (A,R), and C ⊂ B. Then if a ∈ B is an upper bound,
lower bound, maximum, or minimum of C relative to S, then a is an upper bound, lower bound,
maximum, or minimum of C relative to R, respectively.

(b) Suppose ϕ ∶ (B,S) → (A,R) is an order-isomorphism, and C ⊂ B. Then b ∈ B is an upper bound,
lower bound, maximum, minimum, supremum, or infimum of C if and only if ϕ(b) ∈ A is an upper
bound, lower bound, maximum, minimum, supremum, or infimum of ϕ[C], respectively. b ∈ B is
a maximal element, minimal element, maximum, or minimum of B if and only if ϕ(b) ∈ A is a
maximal element, minimal element, maximum, or minimum of A, respectively.

We will be principally interested in the case where (A,R) = (P,≤) is a poset.

Example 24

Consider (P(S),⊂). In this case, there is a maximum S, a minimum ∅, and given Q ⊂ P(S), both
the supremum and infimum exist, and supQ = ⋃Q and infQ = ⋂Q.

Example 25

Consider (N,≤). In this case, there is a minimum 0, but no maximum, for n ≤ n+ 1 for every natural
number n. Additionally, every non-empty subset of N has a minimum element. To see why, we can
first show that every non-empty finite subset of N has both a minimum and maximum element:

Lemma 3.3

Every non-empty finite subset of N has both a minimum and maximum element.

Corollary 3.4: Well-Ordering Principle

Every non-empty subset of N has a minimum element.

Example 26

Consider (N, ∣). In this case, there is a minimum 1 and a maximum 0.
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Section 4

Hasse Diagrams

For small, finite, posets a useful tool in understanding and visualizing the poset is through the use of Hasse
diagrams. The idea is that we may define a simple, directed acyclic graph D with V (D) = P based on the
partial order of a poset (P,≤) such that there is a directed walk (necessarily a path because the digraph is
acyclic) from v ∈ P to w ∈ P if and only if v < w.

What we want to capture is the idea of an immediate successor. Let (P,≤) be any poset, and define the
covering relation ⋖ on P by x ⋖ y if and only if x < y and there does not exist z such that x < z < y. In
this case, we call y the immediate successor of x, and x the immediate predecessor of y, and say that
y covers x. ⋖ is clearly irreflexive and asymmetric. However, it is not transitive, for if x ⋖ y and y ⋖ z, then
it cannot be the case that x ⋖ z, for although x < z holds, we have x < y < z.

For finite posets, ⋖ uniquely determines < in exactly the way we wanted above.
Then we define a digraph D to be the digraph corresponding to ⋖, i.e. with vertex set P and adjacency

relation ⋖. We call this diagraph the Hasse diagram of (P,≤). The graph drawings of D (also called Hasse
diagrams) are the visual tools we’re after. When drawing such graph drawings it is typical to use undirected
edges, but ensuring that whenever (a, b) is an arc in D we draw the vertex corresponding to b above the
vertex corresponding to a.

Example 27

Consider (P({0,1}),⊂). In this case, we have ∅ ⋖ {0}, ∅ ⋖ {1}, {0} ⋖ {0,1}, and {1} ⋖ {0,1}. This
gives us the Hasse diagram

∅

{0}{1}

{0,1}

Example 28

Consider (P({0,1,2,3}),⊂). In this case we have

Gr(⋖) ={(∅,{0}), (∅,{1}), (∅,{2}), (∅,{3}),
({0},{0,1}), ({0},{0,2}), ({0},{0,3}), ({1},{0,1}), ({1},{1,2}), ({1},{1,3}),
({2},{0,2}), ({2},{1,2}), ({2},{2,3}), ({3},{0,3}), ({3},{1,3}), ({3},{2,3})
({0,1},{0,1,2}), ({0,1},{0,1,3}), ({1,2},{0,1,2}), ({1,2},{1,2,3}),
({0,2},{0,1,2}), ({0,2},{0,2,3}), ({0,3},{0,1,3}), ({0,3},{0,2,3}),
({1,3},{0,1,3}), ({1,3},{1,2,3}), ({2,3},{0,2,3}), ({2,3},{1,2,3}),
({0,1,2},{0,1,2,3}), ({0,1,3},{0,1,2,3}), ({0,2,3},{0,1,2,3}), ({1,2,3},{0,1,2,3})}.

This gives us the Hasse diagram
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∅

{1}{0} {2} {3}

{0,3}{0,2}{0,1} {1,2} {1,3} {2,3}

{0,1,3}{0,1,2} {0,2,3} {1,2,3}

{0,1,2,3}

In general there are many different ways to draw a Hasse diagram. For example, instead we could
have had

∅

{0}

{0,1}

{0,1,2}

{0,1,2,3}

{1,2,3}

{2,3}

{3}

{0,3}
{1}

{0,2}

{0,1,3}
{1,2}

{0,2,3}

{1,3}

{2}


